767 research outputs found

    The Post-Newtonian Approximation of the Rigidly Rotating Disc of Dust to Arbitrary Order

    Full text link
    Using the analytic, global solution for the rigidly rotating disc of dust as a starting point, an iteration scheme is presented for the calculation of an arbitrary coefficient in the post-Newtonian (PN) approximation of this solution. The coefficients were explicitly calculated up to the 12th PN level and are listed in this paper up to the 4th PN level. The convergence of the series is discussed and the approximation is found to be reliable even in highly relativistic cases. Finally, the ergospheres are calculated at increasing orders of the approximation and for increasingly relativistic situations.Comment: 19 pages, 2 tables, 4 figures Accepted for publication in Phys. Rev.

    Highly accurate calculation of rotating neutron stars: Detailed description of the numerical methods

    Get PDF
    We give a detailed description of the recently developed multi-domain spectral method for constructing highly accurate general-relativistic models of rapidly rotating stars. For both "ordinary" and "critical" configurations, it is exhibited by means of representative examples, how the accuracy improves as the order of the approximation increases. Apart from homogeneous fluid bodies, we also discuss models of polytropic and strange stars.Comment: 22 pages, 4 figures, 9 tables, version accepted by A&

    On the black hole limit of rotating discs and rings

    Full text link
    Solutions to Einstein's field equations describing rotating fluid bodies in equilibrium permit parametric (i.e. quasi-stationary) transitions to the extreme Kerr solution (outside the horizon). This has been shown analytically for discs of dust and numerically for ring solutions with various equations of state. From the exterior point of view, this transition can be interpreted as a (quasi) black hole limit. All gravitational multipole moments assume precisely the values of an extremal Kerr black hole in the limit. In the present paper, the way in which the black hole limit is approached is investigated in more detail by means of a parametric Taylor series expansion of the exact solution describing a rigidly rotating disc of dust. Combined with numerical calculations for ring solutions our results indicate an interesting universal behaviour of the multipole moments near the black hole limit.Comment: 18 pages, 4 figures; Dedicated to Gernot Neugebauer on the occasion of his 70th birthda

    Gravitational fields of rotating disks and black holes

    Get PDF

    Differentially rotating disks of dust

    Full text link
    We present a three-parameter family of solutions to the stationary axisymmetric Einstein equations that describe differentially rotating disks of dust. They have been constructed by generalizing the Neugebauer-Meinel solution of the problem of a rigidly rotating disk of dust. The solutions correspond to disks with angular velocities depending monotonically on the radial coordinate; both decreasing and increasing behaviour is exhibited. In general, the solutions are related mathematically to Jacobi's inversion problem and can be expressed in terms of Riemann theta functions. A particularly interesting two-parameter subfamily represents Baecklund transformations to appropriate seed solutions of the Weyl class.Comment: 14 pages, 3 figures. To appear in "General Relativity and Gravitation". Second version with minor correction

    Magnetic field reversals and galactic dynamos

    Full text link
    We argue that global magnetic field reversals similar to those observed in the Milky Way occur quite frequently in mean-field galactic dynamo models that have relatively strong, random, seed magnetic fields that are localized in discrete regions. The number of reversals decreases to zero with reduction of the seed strength, efficiency of the galactic dynamo and size of the spots of the seed field. A systematic observational search for magnetic field reversals in a representative sample of spiral galaxies promises to give valuable information concerning seed magnetic fields and, in this way, to clarify the initial stages of galactic magnetic field evolution

    Equilibrium Configurations of Homogeneous Fluids in General Relativity

    Full text link
    By means of a highly accurate, multi-domain, pseudo-spectral method, we investigate the solution space of uniformly rotating, homogeneous and axisymmetric relativistic fluid bodies. It turns out that this space can be divided up into classes of solutions. In this paper, we present two new classes including relativistic core-ring and two-ring solutions. Combining our knowledge of the first four classes with post-Newtonian results and the Newtonian portion of the first ten classes, we present the qualitative behaviour of the entire relativistic solution space. The Newtonian disc limit can only be reached by going through infinitely many of the aforementioned classes. Only once this limiting process has been consummated, can one proceed again into the relativistic regime and arrive at the analytically known relativistic disc of dust.Comment: 8 pages, colour figures, v3: minor additions including one reference, accepted by MNRA

    A classification (uniqueness) theorem for rotating black holes in 4D Einstein-Maxwell-dilaton theory

    Full text link
    In the present paper we prove a classification (uniqueness) theorem for stationary, asymptotically flat black hole spacetimes with connected and non-degenerate horizon in 4D Einstein-Maxwell-dilaton theory with an arbitrary dilaton coupling parameter α\alpha. We show that such black holes are uniquely specified by the length of the horizon interval, angular momentum, electric and magnetic charge and the value of the dilaton field at infinity when the dilaton coupling parameter satisfies 0≤α2≤30\le \alpha^2\le3. The proof is based on the nonpositivity of the Riemann curvature operator on the space of the potentials. A generalization of the classification theorem for spacetimes with disconnected horizons is also given.Comment: 15 pages, v2 typos correcte
    • …
    corecore